
Ppt4J: Patch Presence Test for Java Binaries
Zhiyuan Pan

Zhejiang University
Hangzhou, China
zy_pan@zju.edu.cn

Xing Hu∗
Zhejiang University

Ningbo, China
xinghu@zju.edu.cn

Xin Xia
Software Engineering Application

Technology Lab, Huawei
China

xin.xia@acm.org

Xian Zhan
The Hong Kong Polytechnic

University
Hong Kong, China

chichoxian@gmail.com

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Xiaohu Yang
Zhejiang University
Hangzhou, China
yangxh@zju.edu.cn

ABSTRACT

The number of vulnerabilities reported in open source software has
increased substantially in recent years. Security patches provide the
necessary measures to protect software from attacks and vulnera-
bilities. In practice, it is difficult to identify whether patches have
been integrated into software, especially if we only have binary
files. Therefore, the ability to test whether a patch is applied to the
target binary, a.k.a. patch presence test, is crucial for practitioners.
However, it is challenging to obtain accurate semantic information
from patches, which could lead to incorrect results.

In this paper, we propose a new patch presence test framework
named Ppt4J (Patch Presence Test for Java Binaries). Ppt4J is
designed for open-source Java libraries. It takes Java binaries (i.e.
bytecode files) as input, extracts semantic information from patches,
and uses feature-based techniques to identify patch lines in the bina-
ries. To evaluate the effectiveness of our proposed approach Ppt4J,
we construct a dataset with binaries that include 110 vulnerabilities.
The results show that Ppt4J achieves an F1 score of 98.5% with rea-
sonable efficiency, improving the baseline by 15.6%. Furthermore,
we conduct an in-the-wild evaluation of Ppt4J on JetBrains IntelliJ
IDEA. The results suggest that a third-party library included in the
software is not patched for two CVEs, and we have reported this
potential security problem to the vendor.

CCS CONCEPTS

• Software and its engineering→ Software reliability.

KEYWORDS

Patch Presence Test, Binary Analysis, Software Security

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang.
2024. Ppt4J: Patch Presence Test for Java Binaries. In Proceedings of 46th
International Conference on Software Engineering (ICSE 2024). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The reuse of open source libraries is widespread [25]. Vulnerabili-
ties in open-source software have become a major concern, posing
significant threats to software and users [17]. For example, the
number of Common Vulnerabilities and Exposures (CVEs [6]) re-
ported during the first quarter of 2023 has already exceeded the
total number of CVEs reported in 2016 [37]. Although upstream
developers may discover and fix these vulnerabilities over time,
vulnerable versions may still propagate to downstream software or
libraries, potentially compromising the security of the systems that
rely on them.

Since open source libraries are frequently distributed as binary
files, it is essential that developers and users in the software supply
chain be aware of potential vulnerabilities in the libraries they
introduce. For example, Log4Shell (CVE-2021-44228 [33]) is a well-
known vulnerability in Apache Log4j [12] that can lead to the
execution of arbitrary code. If a software development team has
integrated Log4j into their project, developers should verify if their
version of Log4j is vulnerable to Log4Shell. In other words, they
have to confirm whether the binary contains the patch for CVE-
2021-44228.

The above process of testing whether a security patch is applied
to the program binaries is called patch presence test [44]. However,
traditional approaches that only take binary files for analysis cannot
be utilized for patch presence tests due to the coarse granularity [44].
For example, binary bug search tools, such as Genius proposed
by Feng et al. [10], identify vulnerability types but cannot test
the presence of an arbitrary patch commit. Similarly, binary code
search tools, such as Tracy proposed by David et al. [8], find similar
functions but cannot tell whether the function is patched or not.

To accurately test the presence of a patch in fine granularity,
Zhang et al. propose FIBER [44], a patch presence test framework
for C/C++ binaries that extracts a localized part of patch diff [40] for
signature generation. BScout [7], another framework that targets
Java binaries, utilizes the entire patch diff.

https://orcid.org/0009-0006-6059-5191
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

However, existing studies on patch presence test for Java binaries
still have the following two limitations:
• Inability to capture minor changes. The features ex-
tracted by current approaches are unable to handle some sub-
tle modifications to the source code (e.g., changing method
call parameters, branch conditions and statements outside
method bodies).
• Limited patch semantic. The diffs utilized in existing ap-
proaches cannot perfectly reflect semantic changes (i.e., ac-
tual discrepancies in program behavior) in the patches, lead-
ing to the inclusion of extraneous information that does not
exist in the patches.

Given the widespread application of Java, such as server-side pro-
grams and Android applications, the limitations mentioned above
highlight the need for amore comprehensive and accurate approach.
To address these limitations, we propose a new patch presence test
framework named Ppt4J (Patch Presence Test for Java Binaries).
Ppt4J exploits the correspondence between source code features
and binary features. It first extracts features from the source code
to generate semantic changes. Then, the semantic changes guide
Ppt4J to perform source-to-binary feature matching and feature
queries. Finally, Ppt4J provides the test result by summarizing the
queries.

To evaluate the effectiveness of Ppt4J, we construct a dataset
with binaries that include 110 vulnerabilities in total. We compare
Ppt4J with a state-of-the-art Java patch presence test framework,
BScout [7], in terms of accuracy, precision, recall, and F1 score. To
evaluate the effectiveness of Ppt4J in real-world software, we per-
form an in-the-wild evaluation by testing the presence of patches
in various versions of JetBrains IntelliJ IDEA [38]. The results on
the dataset demonstrate that Ppt4J achieves an F1 score of 98.5%,
improving the baseline by 15.6% while maintaining reasonable effi-
ciency. The results of the in-the-wild evaluation indicate that Ppt4J
remains accurate in real-world scenarios. In addition, our evalua-
tion reveals that Ppt4J has the ability to uncover instances where
application vendors (e.g., JetBrains) have failed to apply security
patches to third-party libraries they import, further demonstrating
its utility in practical settings.

In summary, we make the following contributions:
(1) We propose a novel framework for Java binaries, Ppt4J, to

accurately test the presence of patches by highlighting se-
mantic code differences from patches.

(2) We construct a dataset to evaluate the effectiveness of Ppt4J
by obtaining source code from GitHub repositories, labeling
ground truths, and building binaries.

(3) We evaluate Ppt4J using the dataset and real-world soft-
ware. Ppt4J outperforms the baseline and is able to test the
presence of patches in real-world scenarios.

(4) We release the replication package of Ppt4J1, including the
source code of Ppt4J and our dataset, to facilitate future
research.

The remainder of the paper is structured as follows. Section 2
introduces the background concepts for this paper and motivates
the problem using an example. Section 3 presents the approach of

1https://github.com/pan2013e/ppt4j

Ppt4J. Section 4 describes the baseline approach, the preparation
for our dataset, and the evaluation metrics. Section 5 presents the
experimental results and our case study. Section 6 and Section 7
discusses comparsions with the baseline and threats of validity.
Section 8 summarizes the related work. Section 9 concludes the
paper.

2 BACKGROUND

In this section, we discuss the background of the patch presence
test task and provide a motivating example to illustrate the main
idea of Ppt4J.

2.1 Patch Presence Test

The task of patch presence test and its scope of the problem are
defined as follows:

Definition. Given a security patch diff 𝑃 from a specific open
source library in the upstream, patch presence test works by evaluating
target program binaries 𝐵 on a boolean function

𝑓 : (𝐶1,𝐶2, 𝑃, 𝐵) → {True, False}
where 𝐶1 and 𝐶2 refer to the upstream source code of the software
right before and after patch 𝑃 . 𝐵 refer to the standard Java bytecode in
this paper and should be provided by the user. Among𝐶1,𝐶2 and 𝑃 , at
least two of them must be provided and the third can be automatically
derived.

Patch presence test checks if a specific patch is applied to the
provided target binaries [44]. In this task, the upstream source code
𝐶1,𝐶2 and the target binaries 𝐵 are supposed to belong to the same
library, but the target binaries can be compiled from any version
of source code. The function 𝑓 has two possible return values. If
𝑓 returns true, we confirm the existence of a patch commit within
the binaries, and vice versa.

The advantage of patch presence test lies in its ability to detect
specific patch commits. This enables users to specifically check for
security patches that they are most concerned about. Thus, the
potential risks that arise from vulnerabilities can be mitigated.

1 - XmlPullParser parser = Xml.newPullParser();
2 - XPPAttributesWrapper attributes = new XPPAttributesWrapper(parser);
3 + try
4 + {
5 + XmlPullParser parser = Xml.newPullParser();
6 + XPPAttributesWrapper attributes = new XPPAttributesWrapper(parser);

(a) CVE-2017-1000498 [28]

1 - Document<T> doc = parser.parse(is);
2 + XMLStreamReader reader = StaxUtils.createXMLStreamReader(is);
3 + Document<T> doc = parser.parse(reader);

(b) CVE-2016-8739 [27]

1 - if (A == Algorithm.none && B == 2 && C == 0) {
2 - return Mapper.deserialize(base64Decode(...), JWT.class);
3 + if (B == 2 && C == 0) {
4 + if (A == Algorithm.none) {
5 + return Mapper.deserialize(base64Decode(...), JWT.class);
6 + } else {
7 + throw new InvalidJWTSignatureException();
8 + }

(c) CVE-2018-11797 [30]

Figure 1: Examples of “semantic redundancy”: diff lines ex-

cerpted from full security patches.

Ppt4J: Patch Presence Test for Java Binaries ICSE 2024, April 2024, Lisbon, Portugal

- Document<T> doc = parser.parse(is);
+ XMLStreamReader reader =

StaxUtils.createXMLStreamReader(is);
+ Document<T> doc = parser.parse(reader);

[X] Document<T> doc = parser.parse(is);
[A] XMLStreamReader reader =

StaxUtils.createXMLStreamReader(is);
[X] Document<T> doc = parser.parse(reader);

2 Semantic Change Generation 4 Evaluation

3 Feature Matching

B C D A A C D

A C D B A C

C D A C

1 Feature Extraction

Feature Sets

Match
ResultsSource

& Binary
Features

XMLStreamReader reader =
StaxUtils.createXMLStreamReader(is);

Document<T> doc = parser.parse(reader);

return doc.getRoot();

1
2

3

1
2

3

Source

Binary
ALOAD 6
INVOKESTATIC #28
ASTORE 8

ALOAD 7
ALOAD 8
INVOKEINTERFACE #29, 2
ASTORE 9

ALOAD 9
INVOKEINTERFACE #30, 1
ARETURN

Source
Features

Semantic
Changes

Figure 2: Overall approach of Ppt4J

2.2 Motivating Example

Existing patch presence test work for Java binaries takes the com-
plete diff (i.e., the exact differences in characters) as input to analyze
patch presence. However, existing work is limited as the whole diff
will introduce “semantic redundancy”, that is, some (-) and (+)
lines end up with no semantic changes, which may introduce unre-
lated information.

Intuitively, to accurately test the presence of a patch, we should
extract precise semantic changes from diff that reflect all seman-
tic information while not including unrelated information. We il-
lustrate the importance of semantic changes by using real-world
examples shown in Figure 1.

In the first case of Figure 1, the diff introduces a try-catch
block with six diff lines. However, there are no differences be-
tween lines 1, 2, and 5, 6, except for indentations. If we trim the
leading spaces/tabs, these lines would be identical. In other words,
the actual semantic-related change of the patch is the try-catch
environment, rather than these four statements. Similar cases in-
clude moving statements into if-else, for, or while blocks. In
the second case (Figure 1b), lines 1 and 3 differ due to the change
of a variable (i.e., is −→ reader). The change originates from
calling the method createXMLStreamReader. Thus, the code that
causes the actual semantic change is line 2, not lines 1 and 3. In the
third case (Figure 1c)2, we can observe that an if block is deleted
and another if block is added. But after inspecting the code, the
only semantic change is line 7, that is, throw an exception when
B == 2 && C == 0 && A != Algorithm.none.

From these examples, we conclude that the differences in charac-
ters may not correspond to semantic changes. Motivated by this, we
illustrate the idea of our work, which highlights semantic changes
and is carried out in the following steps:

2The code in the figure is simplified for illustration. The original version
is available at https://github.com/FusionAuth/fusionauth-jwt, with commit hash
0d94dcef0133d699f21d217e922564adbb83a227

Step 1 Feature extraction. We extract features for patch-relevant
Java source code and binaries.

Step 2 Semantic change generation.Wegenerate semantic changes
for a patch based on the original diff and the extracted fea-
tures in Step 1.

Step 3 Feature matching. We match sequences of source-level
features and binary-level features extracted in Step 1.

Step 4 Patch presence evaluation. Instructed by semantic changes
in Step 2 and feature matching results in Step 3, we evaluated
the patch presence for the binaries.

3 APPROACH

In this section, we first provide an overview of Ppt4J and its archi-
tecture. Then, we introduce each component in detail.

3.1 Overview of Ppt4J

The framework of Ppt4J is depicted in Figure 2. Ppt4J takes the
source code and binaries as input. The output of the framework
is the patch presence status (i.e., true or false) of the binaries.
Additionally, the framework provides user-configurable parameters,
which we will discuss in detail later in this section. By utilizing
this framework, Ppt4J is able to efficiently analyze binaries and
accurately test the presence of patches.

3.2 Feature Extraction

This component extracts rule-based features for Java code lines and
bytecode blocks.

3.2.1 Pre-Process. Raw source code and binaries are not ideal for
feature extraction due to certain programming practices, e.g., a
statementmight be splitted intomultiple lines. Additionally, a single
instruction may not accurately represent the intended semantic
information of a Java statement, which is usually compiled into a
group of instructions.

https://github.com/FusionAuth/fusionauth-jwt

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

To address this issue, Ppt4J incorporates filters that aggregate
discrete elements. For instance, we merge split lines in Java source
code to create logical lines from abstract syntax trees (ASTs). As
for binaries, we propose to split instruction sequences into logi-
cal blocks using line number information in binaries. Sometimes,
line numbers may be absent or stripped. We discuss such case in
Section 6.1.

3.2.2 Feature Types. Each line of logical source code or each logical
bytecode block corresponds to a set of features that can include
zero or more features. Our goal is to select feature types that reflect
a large proportion of the Java language specifications and Java VM
specifications [1]. To achieve this, we select a variety of simple
and non-trivial feature types. This ensures that Ppt4J is capable
of capturing significant information and minimizing the risk of
missing important details. As shown in Figure 3, the feature types
in our definition include literals, method invocations, field accesses,
array creations, and special instructions.

To be specific, “literal” contains compile-time constant values,
fields, and expressions. “Method invocation" contains calls to static
methods, virtualmethods, and interfacemethods.We excludemethod
invocations that can be implicitly generated by the compiler fre-
quently. The excluded methods are <init> in Object and String-
Builder, toString, valueOf, append and longValue. For other
method invocations, we include a method’s name, owner (i.e., the
class to which it belongs), and actual parameter types. “Field access”
and “array creation”, as their names suggest, contain read/write to
mutable fields and creation of array objects, respectively. Finally,
when extracting “special instructions”, we seek source code ele-
ments or instructions that meet one of the following characteristics:

(1) Distinctive calculations.❶ Special binary operators: shift and
instanceof; ❷ Special unary operators: ++ and -- (prefix
& postfix).

(2) Control flowmanipulations: return statements, throw state-
ments, if blocks and loops.

(3) Synchronization primitives, e.g., monitorexit instruction
and synchronized blocks.

(4) Representations of syntatic sugars, e.g., the labels of switch
blocks, lambda expressions.

3.2.3 Extraction. For Java source code, we extract features by ana-
lyzing ASTs. First, we recursively generate the class dependencies
from the import statements. Then, we design a custom AST visitor
based on Spoon [35]. Specifically, the visitor walks through the syn-
tax tree, from the root node to leaf nodes. If a source code element
meets any of the rules described in Section 3.2.2, it extracts the
related values or literals, constructs a feature object, and adds it to
the corresponding feature set. For Java binaries, we extract features
by traversing logical blocks using ASM [3, 20, 23]. Specifically, for
each logical bytecode block, we traverse the instructions in the
block. Similar to the extraction of source code, if an instruction
meets any of the rules, the related values or literals are used to
construct a feature object.

For non-trivial feature types, we perform static analysis to collect
fine-grained features, especially when dealing with minor patches.
The details can be found as follows:

Feature value int

double

long

string

...

Literal

owner name arg-list

Method Invocation

owner name type

Field Access

type

Array Creation

THROW

LOOP

RETURN

BRANCH

SYNCHRONIZED

...

1+ ↺

Instruction

1+ ↺

Figure 3: The railroad diagram that illustrates feature types

selected in our approach.

❶ Literals. To deal with compiler optimizations on literals, we
implement constant propagation and folding for the source code.
Accesses to constant fields are replaced by literals, and arithmetics
on literals or constant fields are simplified. This transformation
is interprocedural and interclass because ASTs of all dependent
classes are accessible.

❷Method invocations. Java is an object-oriented programming
language, and inheritance is quite common for code reusability. In
this case, objects of a derived class can be referenced by variables of
a base class. Thus, normal method signatures cannot always reflect
the exact types of the arguments of method invocations. To obtain
the exact argument types of method calls and build fine-grained
method signatures, we implement type analysis for binaries. Start-
ing from the point where an argument variable is initialized, the
analysis simulates possible execution paths and returns a more
precise type of the variable. To be specific, when walking through a
method, it maintains a stack and a local variable table, which store
the types of elements3. During this process, it takes out variable
types in the stack and local variable table, simulates a bytecode in-
struction, stores the resulting types back to the data structures, and
then moves to the next instruction. We use the common superclass
if an element type has multiple possibilities. Due to the static type
system in Java, it is ensured that the stored type is a subtype of
the type found in the method’s original signature. Thus, the type
analysis results in a more detailed method invocation feature.

❸ Loop statements. We distinguish condition statements and
loop statements by generating intra-procedure control flow graphs
(CFGs) for binaries and analyzing the graphs. For example, the patch
in Figure 4 changes a while loop to an if statement. Although both
of while loop and if statement generate branch instructions, loop
statements generate GOTO instructions in future blocks that redirect

3If an element is null, we denote the type as null and do not step further.

Ppt4J: Patch Presence Test for Java Binaries ICSE 2024, April 2024, Lisbon, Portugal

1 @@ -400,7 +400,7 @@ private static int fastRound(final float x) {
2 private int extend(int v, final int t) {
3 // "EXTEND", section F.2.2.1, figure F.12, page 105 of T.81
4 int vt = (1 << (t - 1));
5 - while (v < vt) {
6 + if (v < vt) {
7 vt = (-1 << t) + 1;
8 v += vt;
9 }

Figure 4: Patch snippet from CVE-2018-17202 [32]

the control flow. Since the Java programming language does not
allow programmers to manipulate control flows with keywords like
goto, we assert that a backward GOTO instruction must point to a
loop condition.

3.3 Semantic Change Generation

As discussed in Section 2.2, commonly used utilities like UNIX
diff compare texts between different versions. However, diff is
limited to differences in characters and cannot explain the behavior
of the program [15]. To evaluate patch presence more accurately,
we extract semantic changes for each security patch based on the
original diff generated from the git diff <commit> <commit>
command. This command compares two commits of a git repository
and generates output in unified diff format [18].

First, we parse the diff and split the hunks (i.e., groups of differing
lines interspersed in files) into finer-grained code blocks. During
the parsing process, we filter out unrelated diff contents, i.e., lines
that contain no features. Also, split lines are treated as a single
logical line. After that, we categorize the blocks into three types,
pure addition (A-type), pure deletion (D-type), and mixed blocks
(M-type). AnM-type block consists of both (+) lines and (-) lines,
in which two kinds of lines overlap or adjoin in space, and (-) lines
appear before (+) lines.

Then, we classify the diff lines as pure (+) lines, pure (-) lines
and {(-) line, (+) line} pairs, and put them in different sets. The
classification result reflects the semantic of the patch and can be
used to instruct the patch presence evaluator (in Section 3.5). We
define four types of sets: SA for pure (+) lines, SD for pure (-)
lines, SX for lines to be excluded in our approach, and SM for {(-)
line, (+) line} pairs. In particular, SX refers to the lines that do
not participate in future evaluations. The line pairs in the SM set
are called “modification line pairs”. We consider all diff lines as
semantic changes for A-type and D-type blocks and put them into
SA or SD sets. We apply a heuristic approach for M-type blocks
using previously extracted features to filter semantic changes, as
described in Algorithm 1. The above four sets contain semantic
change lines and are utilized in the patch presence evaluation (Step
4 in Figure 2).

To be specific, Step 2 in Figure 2 illustrates an example of seman-
tic change generation. In this example, we can observe that lines 1
and 3 do not have semantic changes if we put them together, and
thus should be excluded. Line 2, on the other hand, has a semantic

4Similarity metric for feature sets and threshold parameter 𝜎𝑓 are discussed in Sec-
tion 3.4

Algorithm 1 Filtering semantic changes forM-type blocks
Input: An M-type diff block B

1: del, add← splitByType(B)
2: c1← getSmallerOne(del, add)
3: c2← getLargerOne(del, add)
4: window_size← c1.size()
5: initWindow(c2, window_size) ⊲ Initialize a sliding window on c2
6: for all possible windows do
7: best_window← the most similar4window to c1.
8: coeff← simMetric(c1, best_window)
9: end for

10: if coeff = 1 then ⊲ These lines should be excluded
11: SX.putAll(c1)
12: SX.putAll(best_window)
13: else if coeff ≥ 𝜎𝑓 then ⊲ Considered as modification pairs
14: makePairs(c1, best_window).forEach(SM::put)
15: end if

16: for all remaining line l do
17: if l.type = (+) then
18: SA.put(l) ⊲ Considered as addition lines
19: else

20: SD.put(l) ⊲ Considered as deletion lines
21: end if

22: end for

change (i.e., function call createXMLStreamReader), thus we put
it into the SA set.

Our semantic change generator can handle all code differences
inside method bodies. However, for out-of-method source code
lines, we only consider assignments to fields. Since these assign-
ments are components of the constructor methods <init> or static
initialization blocks <clinit>, which cannot be ignored. In this pa-
per, we ignore other types of out-of-method code differences, such
as modifying method signatures or implementing new interfaces
and we assume that these changes should be reflected by other
changes inside the method bodies.

3.4 Feature Matching

From the last step, we extract unified features from the source code
and the binaries, they can be considered as sorted sequences of
feature sets, i.e.,

[(𝑖𝑑𝑥1, 𝑆1), (𝑖𝑑𝑥2, 𝑆2), (𝑖𝑑𝑥3, 𝑆3) · · ·]

where 𝑖𝑑𝑥1 < 𝑖𝑑𝑥2 < · · · < 𝑖𝑑𝑥𝑛 .
𝑖𝑑𝑥𝑖 refers to a logical line number in the source feature sequence

or an instruction block index in the binary feature sequence, and
𝑆𝑖 refers to a feature set. For source sequences, 𝑖𝑑𝑥 may not be
consecutive due to empty or comment lines. In practice, we remap
these indices for convenience.

Inspired by sequence alignment techniques used in other disci-
plines, we employ a similar approach to match source code features
and binary features. In general, given two feature set sequences,

𝐴 = [(𝑎1, 𝑆𝑎1), · · · , (𝑎𝑛, 𝑆𝑎𝑛)],
𝐵 = [(𝑏1, 𝑆𝑏1), · · · , (𝑏𝑛, 𝑆𝑏𝑛)],

the feature matcher outputs a sequence

𝐶 = [(𝑎𝑖1 , 𝑏 𝑗1 , 𝑆𝑘1), · · · , (𝑎𝑖𝑛 , 𝑏 𝑗𝑛 , 𝑆𝑘𝑛)]

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

where the first key in the tuple sorts elements. The 𝑎𝑖𝑛 -th logical
source code line matches the 𝑏 𝑗𝑛 -th binary block. Before matching,
we first define the equivalence of two feature sets:

Definition. Given two finite feature sets 𝑆1, 𝑆2 and a similarity
metric 𝑓 : (𝑆1, 𝑆2) → [0, 1], 𝑆1 and 𝑆2 are equivalent iff

𝑓 (𝑆1, 𝑆2) ≥ 𝜎𝑓 , 𝜎𝑓 ∈ (0, 1)

where 𝜎𝑓 is a threshold parameter. By default, 𝜎𝑓 is set to 0.7.

Specifically, we use the Jaccard similarity coefficient [41] J as
the similarity metric, that is

J (𝐴, 𝐵) =

1 A and B are both empty
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | otherwise

After defining the equivalence of feature sets, we apply a sequence-
matching algorithm. Specifically, we use the longest common subse-
quence (LCS) algorithm because we should obtain as many matches
as possible and we expect the matches to be in order. For example,
Step 3 in Figure 2 illustrates the matching process of two sequences
BCDAACD and ACDBAC. After applying the LCS algorithm, we get
the matching result CDAC. In our LCS algorithm, the elements in
the sequences are feature sets. Then, the aforementioned similarity
metric and equivalence of two feature sets are applied.

However, due to line breaks in the source code, some source
feature sets in the sequence are not matched with binary feature
sets. To address this issue, after running the LCS algorithm, we
start a second matching pass for unmatched binary blocks and
employ a heuristic approach that attempts to search for the best
match. The heuristic idea is that the union of a few consecutive
unmatched binary feature sets is likely to match a source feature
set. Specifically, we employ a variable-length sliding window to
scan the spaces of the unmatched binary feature sets. As the slid-
ing window moves, in each move we obtain an aggregated feature
set, which simply means the union of all binary feature sets in a
window. If an aggregated feature set corresponds to a source code
line, we regard it as a new match. Since the scanning process is
time-consuming and memory-consuming and we assume that pro-
grammers generally avoid splitting statements into too many lines,
we limit the maximum window size to increase performance. By
default, the size is set to 5 instructions/window.

3.5 Patch Presence Evaluation

The patch presence evaluator serves as the decision-making com-
ponent in our approach, responsible for aggregating all relevant
information and determining the presence of a patch in the binaries.
The idea is to assign votes to each semantic change line and let them
make recommendations. These semantic change lines are obtained
from the output of the semantic change generator as described in
Section 3.3. Our voting rules for the patch presence evaluator are
described below:

❶ There are two voting options: A for those in favor of the
binary being patched, and B for those in favor of the binary being
unpatched.

❷ For the (+) lines in the SA set, if the lines appear in the binaries,
they vote for A. If not, they vote for B.

❸ Similarly, for the (-) lines in the SD set, if the lines do not

appear in the binaries, they vote for A. Otherwise, they vote for B.
❹ For modification line pairs (pre, post) in the SM set, we

expect the features in binaries to be more similar to the post-patch
line than to the pre-patch line. Thus, if the similarity score of (post,
binary) is larger than (pre, binary), the lines vote for A. Otherwise,
they vote for B. In terms of similarity, we use the same metric
described in Section 3.4.

❺ Lines in the SX set are ignored as they do not contain semantic
changes.

To determine whether a given source code line appears in the
binaries, we check the existence of its corresponding logical line
number in the output sequence generated by the feature matcher.
In addition to these rules, lines with a greater number of features
are preferred in our approach. To be specific, the number of votes
for each line is equivalent to the number of features it possesses.
Once we have all the votes, we calculate the patch’s “support rate”,
which refers to the percentage of total votes in favor of the binary
being patched. We consider the patch to be present if the support
rate equals or exceeds a specified threshold parameter, denoted by
𝜎𝑝 . By default, the parameter is set to 0.6.

4 EXPERIMENTAL SETTINGS

In this section, we describe the details of the baseline, dataset, and
implementation of our approach.

4.1 Baseline

There exist a number of patch presence test approaches [7, 21, 39,
44]. However, most of them target C/C++ binaries and cannot be
directly employed to test Java binaries because machine instruction
sets and bytecode instruction sets differ a lot. Among the existing
approaches, BScout [7] is a patch presence test framework specifi-
cally designed for Java binaries, and we use it as our baseline. Since
the official implementation of BScout is not publicly available, we
reimplement their approach with about 5,000 lines of Java code.

4.2 Dataset

Vuln. Info Database

Community

Repository

CVE-2016-3720

CVE-2017-18349

CVE-2019-10173

CVE-2020-1695

……

Labeled Binaries

Vulnerability List
(𝓓𝟏	&	𝓓𝟐)

1. Collect vulnerabilities 2. Search for patch commits 3. Build binaries from ground truth

Figure 5: Steps to construct the dataset

To evaluate the effectiveness of Ppt4J, we construct a dataset,
as illustrated in Figure 5. In detail, the construction process can be
divided into the following three steps:

❶ Vulnerability collection. In this step, we collect a number
of vulnerabilities for evaluation. We include two lists of vulnerabil-
ities. The first list (abbreviated as D1) consists of the Java library
vulnerabilities evaluated in BScout’s experiments, and the second

Ppt4J: Patch Presence Test for Java Binaries ICSE 2024, April 2024, Lisbon, Portugal

Table 1: List of vulnerabilities selected from Vul4J [4]

Library Name Vulnerability ID Library Name Vulnerability ID

alibaba/fastjson CVE-2017-18349 eclipse/rdf4j CVE-2018-20227
apache/camel CVE-2015-0264, CVE-2015-0263 ESAPI/esapi-java-legacy CVE-2013-5960
apache/commons-compress CVE-2019-12402, APACHE-COMMONS-001 esigate/esigate CVE-2018-1000854
apache/commons-configuration CVE-2020-1953 FasterXML/jackson-dataformat-xml CVE-2016-7051, CVE-2016-3720
apache/commons-fileupload CVE-2013-2186 inversoft/prime-jwt CVE-2018-1000125, CVE-2018-1000531
apache/commons-imaging CVE-2018-17201, CVE-2018-17202 javamelody/javamelody CVE-2013-4378
apache/commons-io CVE-2021-29425 jenkinsci/ccm-plugin CVE-2018-1000054
apache/cxf CVE-2015-5253, CVE-2016-8739 jenkinsci/groovy-sandbox CVE-2018-1000865
apache/httpcomponents-client HTTPCLIENT-1803 jenkinsci/jenkins CVE-2017-1000355, CVE-2018-1000864, CVE-2018-1999044
apache/jspwiki CVE-2019-0225 jenkinsci/junit-plugin CVE-2018-1000056
apache/pdfbox PDFBOX-3341, CVE-2018-11797 jenkinsci/pipeline-build-step-plugin CVE-2018-1000089
apache/santuario-java CVE-2014-8152 jenkinsci/subversion-plugin CVE-2018-1000111
apache/shiro CVE-2016-6802 neo4j-contrib/neo4j-apoc-procedures CVE-2018-1000820
apache/sling CVE-2016-5394, CVE-2016-6798 OpenRefine/OpenRefine CVE-2018-20157, CVE-2018-19859
apache/sling-org-apache-sling-xss CVE-2017-15717 resteasy/Resteasy CVE-2020-1695
apache/struts CVE-2016-8738, CVE-2014-0113, CVE-2014-0112,

CVE-2016-4465, CVE-2016-2162, CVE-2014-7809,
CVE-2016-4436, CVE-2014-0116, CVE-2015-1831,
CVE-2016-3081

spring-projects/spring-data-rest CVE-2017-8046

apache/tika CVE-2018-8017 spring-projects/spring-framework CVE-2018-15756, CVE-2016-9878, CVE-2018-1272
apache/tomee CVE-2015-8581 spring-projects/spring-security-oauth CVE-2016-4977
apereo/java-cas-client CVE-2014-4172 square/retrofit CVE-2018-1000850
cloudfoundry/uaa CVE-2019-3775, CVE-2018-1192 swagger-api/swagger-parser CVE-2017-1000207
codehaus-plexus/plexus-archiver CVE-2018-1002200 x-stream/xstream CVE-2019-10173
(Continued in the right column) zeroturnaround/zt-zip CVE-2018-1002201

one (abbreviated as D2) is selected5 from Bui et al.’s work, i.e.,
Vul4J [4]. The corresponding patches in D1 are trivial and are used
to check the correctness of our reimplementation of BScout. To
evaluate the ability to test the presence of patches that introduce
minor changes, we also include the D2 list. Detailed vulnerabilities
in D2 are listed in Table 1.

❷ Commit searching. In addition to the list of vulnerabilities,
the dataset also contains project snapshots and corresponding bina-
ries labeled with ground truth. For a vulnerability in the list, we first
search it in the National Vulnerability Database (NVD) [26], a CVE
database managed by the U.S. government. If a patch commit URL
is given in the database, we are done with the search. Otherwise,
we manually search for patch-related commit IDs or issue IDs in
open-source projects. Once we locate the URL, we can derive the
patch status (i.e., patched or unpatched) of a project snapshot after
searching. We use patch status as ground truth to label a project
snapshot.

❸ Binary compilation. In the final step, we compile binaries
from project snapshots. The compilation process can be automated
as most open-source Java projects are well documented and provide
build scripts , e.g., build.xml [11], pom.xml [13], build.gradle [19]
and shell scripts. In practice, most of the projects in the dataset [4]
can be built without human intervention, except for a few old ver-
sions of the Spring Framework, since some dependencies cannot be
automatically resolved due to the change of their repository URLs6.
To correspond to the common compilation and distribution process
for open source libraries, we use the default compiler options and
flags specified in the build scripts.

4.3 Evaluation Metrics

Patch presence test can be considered as a binary classification
problem in evaluations, and there are four possible outcomes:
5Some vulnerabilities are excluded because the corresponding projects are too old and
the build tools fail to resolve some dependencies during compilation.
6https://spring.io/blog/2020/10/29/notice-of-permissions-changes-to-repo-spring-io-
fall-and-winter-2020

• True Positive (TP): The binaries are patched, and Ppt4J
detects the presence of the patch.
• True Negative (TN): The binaries are not patched, and Ppt4J
does not detect the presence of the patch.
• False Positive (FP): The binaries are not patched, but Ppt4J
detects the presence of the patch.
• False Negative (FN): The binaries are patched, but Ppt4J
does not detect the presence of the patch.

Based on these possible outcomes, the evaluation metrics we use
are defined as follows:

Accuracy is the proportion of correct predictions among the
total number of cases examined.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Precision measures the accuracy in classifying a sample as

positive.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall, also known as True Positive Rate (TPR), measures the

ability to detect positive samples.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
F1 Score is the harmonic mean of precision and recall, which

symmetrically represents both precision and recall in one metric.

𝐹1 = 2 × Precision × Recall
Precision + Recall

4.4 Implementation of Our Approach

We implement the framework in Java and the replication package
is publicly available.7 To parse Java source code and analyze ASTs,
we exploit Spoon which is a library for implementing analyses
and transformations of Java source code proposed by Pawlak et
al. [35]. To parse and analyze Java binaries, we employ ASM [20],

7https://github.com/pan2013e/ppt4j

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

which is an all-purpose Java bytecode manipulation and analysis
framework. We set the threshold of feature equivalence 𝜎𝑓 to 0.7
and the threshold of patch support rate 𝜎𝑝 to 0.6. Besides, we set
the maximum window size of the second feature matching pass
to 5 instructions. Ppt4J is lightweight and does not cost too much
CPU and memory resources. We perform our experiments on a
Java HotSpot(TM) 64-bit server VM (build 17.0.2+8-LTS-86) on a
personal computer (MacOS 13, 64-bit 3.2GHz CPU, 16GB RAM).

5 RESULTS

In this paper, we aim to answer the following four research ques-
tions:
RQ.1 (Effectiveness) How accurate is the patch presence test

framework compared to previous work?
RQ.2 (Efficiency) How efficient is the patch presence test frame-

work, especially when dealing with large code repositories?
RQ.3 (Ablation Study) How do the analyses described in Sec-

tion 3.2.3 contribute to the overall effectiveness?
RQ.4 (In-the-wild Evaluation) Can our approach analyze open-

source libraries in real-world applications?

5.1 RQ1: Effectiveness

Table 2: Test results on the dataset

Test Suite

Metrics

Acc. Prec. Recall F1

BScout D1 100% 100% 100% 100%
D2 87.1% 100% 74.2% 85.2%

Ppt4J D1 100% 100% 100% 100%
D2 98.5% 100% 97.0% 98.5%

5.1.1 Results. The overall result is presented in Table 2. According
to Table 2, we can observe that both BScout and our work achieve
100% accuracy, precision, recall and F1 score on D1. The results of
BScout illustrate that our reproduction of it is consistent with the
results reported by Dai et al [7]. When we perform experiments
on D2, which has more subtle patches, the recall and F1 score of
BScout drop noticeably, while Ppt4J still maintains a remarkable
performance.

In addition to the conclusion mentioned above, Ppt4J does not
generate false positive results, which means that it does not mistak-
enly report a binary as having been patched when it has not. This
is an important feature as it ensures that developers can trust the
tool’s output and avoid wasting time investigating false leads.

5.1.2 Qualitative Analysis. We also conduct an qualitative analy-
sis that presents some representative patterns to demonstrate the
strengths of our work compared to BScout.

❶ Minor changes. We examine several security patches in our
dataset and find that the features extracted by BScout are unable to
distinguish some minor changes.

For example, Figure 6 shows the patch diff of CVE-2017-18349. In
this patch, only the first parameter of the method call parseArray

1 @@ -174,7 +174,7 @@ public <T> T deserialze(DefaultJSONParser parser, Type

type, Object fieldName) {↩→
2 componentType = componentClass = clazz.getComponentType();
3 }
4 JSONArray array = new JSONArray();
5 - parser.parseArray(componentClass, array, fieldName);
6 + parser.parseArray(componentType, array, fieldName);
7
8 return (T) toObjectArray(parser, componentClass, array);
9 }

Figure 6: Patch snippet from CVE-2017-18349 [29]: An exam-

ple of minor change that only replaces an argument

"parseArray":(Ljava/lang/reflect/Type;L...Collection;L...Object;)V

Figure 7: Class hierarchy of java.lang.reflect.Type

(Type, Collection, Object) is changed from componentClass
to componentType. This is a minor change that only includes a
variable replacement.

l BScout: According to Dai et al. [7], BScout only extracts
method names with argument lengths. In this case, the features of
the method call before and after the patch are identical.

m Ppt4J: In this case, Ppt4J works because it implements a
type analysis, as described in Section 3.2.3. The type of the first
parameter in the method signature is java.lang.reflect.Type.
It is too general in the class hierarchy, and many subclasses imple-
ment this interface, as illustrated in Figure 7. With the help of type
analysis, Ppt4J trace the variables and check their exact type in-
stead of using their common super class java.lang.reflect.Type.
The exact type of componentClass is java.lang.Class, and the
exact type componentType is java.lang.reflect.Type. In this
way, Ppt4J extracts different features before and after the patch,
and thus detects the minor change.

❷ Syntactic sugars. Syntatic sugars [42] make modern pro-
gramming languages carry more semantic information than their
lower-level representations such as IR, bytecode, and assembly code.
To accurately perform feature matching (as described in Section 3.4),
we must bridge the gaps between source code and binary, i.e., inter-
pret syntactic sugars in the source code to bytecode representations.
Ppt4J is able to interpret and capture these types of information to
reduce the number of false negative results.

For example, variable-length arguments (abbriviated as varargs)
are syntactic sugars in Java and are converted into raw arrays in
code generation. BScout avoids extracting array creations because
Java compilers automatically create java.lang.Object[] when
calling vararg methods [7]. This solves the inconsistency problem,
but BScout cannot detect if a programmer manually creates an
array. On the contrary, Ppt4J interprets varargs at the source code
level, allowing it to detect all kinds of array creations.

Ppt4J: Patch Presence Test for Java Binaries ICSE 2024, April 2024, Lisbon, Portugal

1 @@ -46,7 +47,7 @@ public abstract class MimeTypeUtils {
2 // other codes omitted
3
4 - private static final Random RND = new Random();
5 + private static final Random RND = new SecureRandom();

Figure 8: Patch snippet from CVE-2018-1272 [31]: An exam-

ple of syntatic sugar that uses a field initialization statement

Table 3: Time consumption on the dataset

Framework Average ∼75%a

BScoutb 0.34 sec/patch 0.28 sec/patch

Ppt4J 0.41 sec/patch 0.30 sec/patch
a 75% of test cases are analyzed within this amount of time.
b This refers to our reproduction of Dai et al.’s work [7].

Another example of syntactic sugars in Java is field initializa-
tions. Field initializations are actually statements in the constructor
method <init> or static initializing block <clinit>. Our work
Ppt4J is designed to extract features from field initializations, but
BScout simply ignores them. Figure 8 is a security patch of the
Spring framework [34], which only changes the initialization of the
field RND. Ppt4J detects this change, while BScout does not.

❸ Semantic redundancy in diff. As shown in Section 2.2,
Ppt4J utilizes the features of the source code and excludes unrelated
information in diff. However, BScout takes into account the whole
patch diff. Although BScout indeed does not miss any semantic
information in the patches, it is very likely to introduce unrelated
information and fail in cases as shown in Figure 1c.

Answer to RQ1: Ppt4J achieves high accuracy, precision,
recall and F1 score on the dataset (98.5%, 100%, 97% and
98.5% respectively) and outperforms our baseline BScout
by 15.6% in terms of F1 score. In addition, Ppt4J is effective
in handling patches with minor changes.

5.2 RQ2: Efficiency

Table 3 shows that most patches can be quickly analyzed. Some
patches may take a bit longer (several seconds) because of the CFG
construction and analysis on large bytecodes, but we think it is still
acceptable compared to the time costs of human inspections. Ppt4J
can achieve this performance because only dependent bytecodes
are analyzed, so the time cost is not proportional to the project size.
Besides, the preprocessing phase in dataset preparations caches
the source code features and reduces the analysis time when users
input their binaries. Table 3 also lists the time consumption of our
reimplemented baseline, BScout. Compared to BScout, Ppt4J is
a bit slower in most test cases, but we think that Ppt4J’s advan-
tages in effectiveness (as discussed in RQ1) can compensate for the
shortcomings in terms of time efficiency.

Figure 9: Test results for different variants of Ppt4J

Answer to RQ2: Ppt4J analyzes most security patches in
one second and is also fast when analyzing binaries from
large projects.

5.3 RQ3: Ablation Study

To investigate the contribution of an analysis and its corresponding
feature type (as described in Section 3.2.3) to the effectiveness of
Ppt4J, we create the following variants:
• Ppt4J FULL: The complete version of Ppt4J, exactly as Sec-
tion 3 illustrated.
• Ppt4J 𝚫1: Type analysis is removed. This means that method
signatures are not revised during feature extraction.
• Ppt4J 𝚫2: Some special instructions are ignored, such as
loop and branch.
• Ppt4J 𝚫3: Constant propagation/folding is removed. This
means that constant fields and expressions are not simplified
during feature extraction.

We evaluate the above four variants on the same dataset (as
described in Section 4.2), and compare the incomplete ones with
Ppt4J FULL. The results are illustrated in Figure 9. We can conclude
that Ppt4J benefits from these analyses. In the cases of Ppt4J 𝚫1-3,
the F1 score decreases by 4.0%, 2.3%, and 6.8% respectively after one
specific analysis is removed.

Answer to RQ3: The analyses proposed in Section 3.2.3
make extracted features fine-grained, and they indeed im-
prove the effectiveness of Ppt4J.

5.4 RQ4: In-the-wild Evaluation

5.4.1 Experimental setting. To evaluate the effectiveness of our
approach in practical settings, we use IntelliJ IDEA Ultimate [38]
as the target software for our in-the-wild evaluation. The reason
to choose IntelliJ IDEA is that it is a widely used IDE software,
and it embeds a large number of binaries from open-source Java
libraries. We obtain various versions of IntelliJ IDEA and extract
the included third-party libraries. Next, we conduct patch presence

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

Table 4: Evaluation on different versions of IntelliJ IDEA

Version Timeline
a

Vulnerability

V1 V2 V3 V4 V5

CVE-2019-12402 Ñ:08/19b TN TN TP TP TP

CVE-Anonymous-1 TN TN TN TN TN

CVE-Anonymous-2c TN TN TN TN TN

CVE-2021-29425 Ñ:05/18 TN TN TP TP TP

HTTPCLIENT-1803 Ñ:01/17 TN FN FN FN FN

CVE-2017-1000487 Ñ:10/13 TP TP TP TP TP

CVE-2015-6748 Ñ:07/15 N/Ad TP TP TP TP

CVE-2015-6420 Ñ:11/15 TN TP TP TP TP
a V1 - V5 are 5 versions of IntelliJ IDEA Ultimate, sorted in ascending order of release
time. V1: IU-181.5684.4; V2: IU-191.8026.42; V3: IU-203.8084.24; V4: IU-213.7172.25; V5:
IU-231.8109.175. The first two digits in the version string specify the release year, e.g.,
V1 was released in 2018.
b Patch commit time. Retrieved from Github, in MM/YY format.
c Real IDs of CVE-Anonymous-1/2 are omitted due to “responsible reporting” principle.
d N/A means this version of software does not include the library.

tests on these open-source libraries for specific patches. However,
labeling real-world binaries with ground truth is challenging since
not all binary packages contain version information. To address
this issue, we utilize unit tests in some patches. These unit tests are
committed together with the bug fixes, and can be trusted sources
of ground truths. If our patch presence predictions align with the
unit test results, it indicates that our approach can perform well in
real-world scenarios. Specifically, each test case employed in this
experiment includes: ❶ Binaries of a third-party library extracted
from IntelliJ IDEA. ❷ A security patch, along with the unit test,
and the source code of the library before and after the patch.

5.4.2 Results. The detailed result is shown in Table 4. We conclude
that most of the output from Ppt4J is consistent with the unit
tests and the accuracy is 89.7%. We also notice that Ppt4J does not
generate false positive outputs. In conclusion, we believe that Ppt4J
is capable of real world scenarios. We also learn some facts about
the patch status in IntelliJ IDEA from the experiment results.

❶ The application vendor JetBrains promptly applied the up-
stream patch for CVE-2019-12402, ensuring that libraries in releases
after 2020 were not affected by this vulnerability. However, even
though the patch commit for CVE-2021-29425 was released in May
2018, JetBrains did not apply it in one of their 2019 versions, such
as IU-191.8026.42. Similarly, for CVE-2015-6420, the patch commit
was available as early as November 2015, but they failed to apply it
in one of the 2018 versions.

❷ We notice that a third-party library in IntelliJ IDEA has not yet
been patched for two specific vulnerabilities (i.e., CVE-Anonymous-1
and CVE-Anonymous-2, as shown in Table 4) until now. The appli-
cation vendor JetBrains forked its branch, but has not merged the
upstream branch later, leaving the vulnerabilities unresolved. Al-
though we cannot definitively assert that vulnerabilities in open

source libraries will invariably impact commercial software, we be-
lieve that minimizing vulnerabilities in these libraries can mitigate
the risk of exploitation. Thus, we report this problem to JetBrains.

❸ We also perform this evaluation using our reimplemented
baseline. Compared to Ppt4J’s results, the accuracy of BScout de-
creases by 14.3% and drops to 76.9%. Upon examination of the failed
test cases, we find out Ppt4J performs better due to its effective-
ness in handling patches with minor changes, as discussed in RQ1.
For example, in the case of CVE-Anonymous-1, BScout cannot even
tell whether a binary contains the patch because no features are
extracted from the patch.

Answer to RQ4: Ppt4J is capable of analyzing open source
libraries in real-world applications. In our evaluation, it
achieves an accuracy of 89.7% and detects two unpatched
CVEs in a third-party library within IntelliJ IDEA. We have
reported this potential problem to JetBrains.

6 DISCUSSION

6.1 Line number information

Although generated by default, line number information is part of
the debug information, and can be stripped from binaries. Ppt4J fails
without such information. Despite this, we perform an empirical
study on line number information in open-source Java libraries.
We collect 9,077 jar files (containing 2,032,221 class files in total),
which are downloaded from the Maven central repository [13]. Our
findings show that over 90% of these class files include line number
information. As Ppt4J is proposed for use for general open-source
libraries, we believe it is still applicable in many practical scenarios.

6.2 Ppt4J vs. Baseline

Compared to the baseline BScout, Ppt4J selects different sets of
feature types, and applies different algorithms to extract non-trivial
features and handle syntactic sugars. With these algorithms, Ppt4J
is able to capture minor changes in patches and the extracted fea-
tures are more fine-grained, as illustrated in Section 3.2.3 and the
qualitative analysis on the dataset in Section 5.1. It is also worth
noting that we propose the semantic change generator in Ppt4J.
With semantic change generation, Ppt4J is able to process diff files
and filter out unrelated information based on the previously ex-
tracted features, as illustrated in Section 2 and Section 3. However,
BScout takes the complete patch diff as input and cannot handle the
semantic redundancy in diffs. The drawback of Ppt4J compared to
BScout is its efficiency and dependence on line number information,
but as discussed earlier in Section 5.2 and Section 6.1, we believe
Ppt4J remains practical.

7 THREATS TO VALIDITY

Correctness of our reproduction. ❶ As mentioned earlier in
Section 4.2 and Section 5.1, we reimplement BScout [7] and repro-
duce identical results on dataset D1 in terms of accuracy, precision,
recall and F1 score. However, in addition to D1, Dai et al. [7] also
construct a dataset consisting of Android applications and evaluate
their approach on this dataset. Since the details of this dataset are
not available, we cannot reproduce all experiments in the authors’

Ppt4J: Patch Presence Test for Java Binaries ICSE 2024, April 2024, Lisbon, Portugal

paper. This might be a threat to the correctness of our reproduction
and the effectiveness evaluation. ❷ We only reimplement one vari-
ant of BScout that relies on line number information. The complete
version of BScout leverages a machine learning model, but neither
the model weights nor the training dataset is publicly available.
Thus, it is not practical for us to reimplement the complete one.
However, this does not create issues with the reliability of our find-
ings in Section 5. According to Dai et al. [7], the performance of
the complete version of BScout is lower than the variant if line
number information is present. Therefore, the performance of our
reimplemented baseline reported in Section 5 is supposed to be an
upper bound.
Patch backporting. Backporting security patches to older versions
is a common practice, which means that multiple different patch
commits can correspond to the same vulnerability. However, when
constructing the dataset, we only selected one version for each
vulnerability, and Ppt4J cannot automatically select the correct
patch commit. This limitation can lead to erroneous results when
Ppt4J analyzes open-source libraries in real-world scenarios.
Inherent flaws with rule-based features. Ppt4J extracts rule-
based features from the source code, providing finer granularity
than the baseline approach. However, this method has an inherent
limitation in that it cannot always cover all language features. As
the Java language continues to evolve, the tool must be updated to
adapt to programs written using new standards.
Effectiveness against version changes. In Ppt4J, we use the
longest common subsequence algorithm tomatch the features. How-
ever, this algorithm assumes that the source code structure is stable
and may produce unsatisfactory results in the case of significant
code changes, such as API-breaking updates.

For example, during our evaluation of IntelliJ IDEA, we en-
counter four false negative samples related to HTTPCLIENT-1803
(in Table 4). In this case, the unit tests show that the samples were
patched, but Ppt4J fails to detect the patch.

Upon further examination of the bytecodes, we discover that
IntelliJ IDEA imported a library of a newer version, which has been
reconstructed and replaced by a different set of APIs. As a result,
the code differences in the security patch were not reflected in the
binaries of the new version.

8 RELATEDWORK

Binary similarity analysis. The study of function similarity in
binaries has been tackled through various techniques. Bourquin
et al. [2] and BinDiff [5] rely on the isomorphism of control flow
graphs to evaluate similarities. Khoo et al. propose Rendezvous [22],
which optimizes this approach by improving the granularity of
the analysis. Alternative approaches, such as BinHunt [14] and
iBinHunt [24], formulate the semantic equivalence of basic blocks
through symbolic execution and theorem provers.

For cross-platform capability, Pewny et al.[36] extract I/O behav-
iors at the basic block level. In addition, Eschweiler et al. propose
discovRE [9], which generates platform-independent feature vec-
tors from basic blocks. Furthermore, new techniques have been
proposed to address the issues of efficiency and scalability. Ge-
nius [10] encodes the representations of control flow graphs as
graph embeddings. Other methods like Gemini [43] further utilize

neural networks. Additionally, Huang et al. [16] propose BinSe-
quence, which uses Min-hashing to filter the search space.
Patch presence test. The first to publicly propose and implement
patch presence tests is FIBER [44]. FIBER generates binary sig-
natures by analyzing security patches. These signatures reflect
representative changes introduced by the patches and are utilized
to search for the target binary file.

Subsequent papers improve and extend FIBER’s approach. Dai et
al. propose BScout [7] to check the existence of patches in Java bina-
ries without generating signatures. BScout employs new techniques
to bridge the gap between source code and bytecode instructions
and to check patch semantics throughout the target executable
file. Jiang and Zhang propose PDiff [21] to test the patch pres-
ence of images from the downstream kernel in the open source
kernel domain. PDiff generates summaries for patches. Based on
semantic summaries, PDiff compares the target with mainstream
versions before and after applying the patch and selects the clos-
est for evaluation. An alternative approach, Osprey [39], employs
a more lightweight static analysis algorithm compared to FIBER
and improves efficiency without compromising too much accuracy.
Among the related work, FIBER, PDiff and Osprey test the patch
presence of C/C++ binaries, while BScout and our proposed Ppt4J
target Java binaries. Compared to the state of the art, the advantages
of Ppt4J are mainly its superiority of capturing minor changes in
patches and its ability to extract precise semantic changes from
patch diffs.

9 CONCLUSION AND FUTUREWORK

In this paper, we aim to address the problem with patch diffs in
existing work by highlighting semantic changes. Then we design
and implement Ppt4J, a patch presence test framework targeting
Java binaries, which performs accurate tests with the help of se-
mantic changes that reflect differences in program effects. Ppt4J
is systematically evaluated on a dataset with real-world vulnera-
bilities. The results show that Ppt4J achieves an F1 score of 98.5%
while maintaining a reasonable performance. In addition, we per-
form an in-the-wild evaluation Ppt4J on IntelliJ IDEA, in which it
achieves an accuracy of 89.7% with no false positive results. Ppt4J
detects two unpatched CVEs in a third-party library within IntelliJ
IDEA, and we have reported this potential problem to the vendor.
In future work, one possible research attempt is to minimize the im-
pact of significant code changes in binaries (e.g., patch backporting
and version changes, as described in Section 7). This investigation
may help improve the effectiveness of our proposed approach in
real-world applications.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foun-
dation of China (No. 62141222) and the National Research Founda-
tion, Singapore under its Industry Alignment Fund – Prepositioning
(IAF-PP) Funding Initiative. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.

ICSE 2024, April 2024, Lisbon, Portugal Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang

REFERENCES

[1] Oracle and/or its affiliates. [n. d.]. Java Language and Virtual Machine Specifica-
tions. Retrieved July 1, 2023 from https://docs.oracle.com/javase/specs

[2] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer: accurate
comparison of binary executables. In Proceedings of the 2nd ACM SIGPLAN Pro-
gram Protection and Reverse Engineering Workshop. 1–10.

[3] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems (2002).

[4] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Díaz Ferreyra. 2022.
Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards the Study
of Program Repair Techniques. In 2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR). 464–468. https://doi.org/10.1145/3524842.
3528482

[5] The Zynamics Company. [n. d.]. BinDiff. Retrieved July 1, 2023 from
https://www.zynamics.com/bindiff.html

[6] The MITRE Corporation. [n. d.]. Common Vulnerabilities and Exposures. Re-
trieved July 1, 2023 from https://www.cve.org

[7] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing,
Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout: Direct
whole patch presence test for java executables. In Proceedings of the 29th USENIX
Conference on Security Symposium. 1147–1164.

[8] Yaniv David and Eran Yahav. 2014. Tracelet-Based Code Search in Executa-
bles. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).
Association for Computing Machinery, New York, NY, USA, 349–360. https:
//doi.org/10.1145/2594291.2594343

[9] Sebastian Eschweiler, Khaled Yakdan, Elmar Gerhards-Padilla, et al. 2016. dis-
covRE: Efficient Cross-Architecture Identification of Bugs in Binary Code.. In
Ndss, Vol. 52. 58–79.

[10] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
480–491.

[11] The Apache Software Foundation. 2023. Apache Ant. Retrieved July 1, 2023
from https://ant.apache.org

[12] The Apache Software Foundation. 2023. Log4j - Apache Log4j(TM) 2. Retrieved
July 1, 2023 from https://logging.apache.org/log4j/2.x

[13] The Apache Software Foundation. 2023. Maven. Retrieved July 1, 2023 from
https://maven.apache.org

[14] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automatically
finding semantic differences in binary programs. In Information and Communica-
tions Security: 10th International Conference, ICICS 2008 Birmingham, UK, October
20-22, 2008 Proceedings 10. Springer, 238–255.

[15] Susan Horwitz. 1990. Identifying the Semantic and Textual Differences between
Two Versions of a Program. In Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation (White Plains, New York,
USA) (PLDI ’90). Association for Computing Machinery, New York, NY, USA,
234–245. https://doi.org/10.1145/93542.93574

[16] He Huang, Amr M Youssef, and Mourad Debbabi. 2017. Binsequence: Fast, accu-
rate and scalable binary code reuse detection. In Proceedings of the 2017 ACM on
Asia conference on computer and communications security. 155–166.

[17] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2023. The Secret Life of Software Vulnerabilities: A Large-Scale
Empirical Study. IEEE Transactions on Software Engineering 49, 1 (2023), 44–63.
https://doi.org/10.1109/TSE.2022.3140868

[18] Free Software Foundation Inc. [n. d.]. Detailed Unified (Comparing and Merging
Files). Retrieved Oct 11, 2023 from https://www.gnu.org/software/diffutils/
manual/html_node/Detailed-Unified.html

[19] Gradle Inc. 2023. Gradle Build Tool. Retrieved July 1, 2023 from https://gradle.org
[20] INRIA. [n. d.]. ASM. Retrieved July 1, 2023 from https://asm.ow2.io

[21] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDiff: Semantic-Based Patch
Presence Testing for Downstream Kernels. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). Association for Computing Machinery, New York, NY, USA, 1149–1163.
https://doi.org/10.1145/3372297.3417240

[22] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. 2013. Rendezvous: A search
engine for binary code. In 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE, 329–338.

[23] Eugene Kuleshov. 2007. Using ASM framework to implement common bytecode
transformation patterns. Proc. of the 6th AOSD, ACM Press (2007).

[24] Jiang Ming, Meng Pan, and Debin Gao. 2013. iBinHunt: Binary hunting with
inter-procedural control flow. In Information Security and Cryptology–ICISC 2012:
15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Selected
Papers 15. Springer, 92–109.

[25] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). IEEE, 7–7.

[26] NIST. [n. d.]. National Vulnerability Database. Retrieved July 1, 2023 from
https://nvd.nist.gov

[27] NVD. 2016. CVE-2016-8739. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2016-8739

[28] NVD. 2017. CVE-2017-1000498. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2017-1000498

[29] NVD. 2017. CVE-2017-18349. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2017-18349

[30] NVD. 2018. CVE-2018-11797. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2018-11797

[31] NVD. 2018. CVE-2018-1272. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2018-1272

[32] NVD. 2018. CVE-2018-17202. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2018-17202

[33] NVD. 2021. CVE-2021-44228. Retrieved July 1, 2023 from https://nvd.nist.gov/
vuln/detail/CVE-2021-44228

[34] VMware Inc. or its affiliates. [n. d.]. Spring Framework. Retrieved July 1, 2023
from https://spring.io/projects/spring-framework

[35] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[36] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 709–724.

[37] SecurityScorecard. 2023. Browse cve vulnerabilities by date. Retrieved July 1,
2023 from https://www.cvedetails.com/browse-by-date.php

[38] JetBrains s.r.o. [n. d.]. IntelliJ IDEA – the Leading Java and Kotlin IDE. Retrieved
July 1, 2023 from https://www.jetbrains.com/idea

[39] Peiyuan Sun, Qiben Yan, Haoyi Zhou, and Jianxin Li. 2021. Osprey: A fast and
accurate patch presence test framework for binaries. Computer Communications
173 (2021), 95–106. https://doi.org/10.1016/j.comcom.2021.03.011

[40] Wikipedia. 2023. Diff - Wikipedia. Retrieved July 1, 2023 from https:
//en.wikipedia.org/wiki/Diff

[41] Wikipedia. 2023. Jaccard index - Wikipedia. Retrieved July 1, 2023 from
https://en.wikipedia.org/wiki/Jaccard_index

[42] Wikipedia. 2023. Syntactic sugar - Wikipedia. Retrieved July 1, 2023 from
https://en.wikipedia.org/wiki/Syntactic_sugar

[43] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security. 363–376.

[44] Hang Zhang and Zhiyun Qian. 2018. Precise and Accurate Patch Presence Test
for Binaries. In USENIX Security Symposium. 887–902.

https://docs.oracle.com/javase/specs
https://doi.org/10.1145/3524842.3528482
https://doi.org/10.1145/3524842.3528482
https://www.zynamics.com/bindiff.html
https://www.cve.org
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/2594291.2594343
https://ant.apache.org
https://logging.apache.org/log4j/2.x
https://maven.apache.org
https://doi.org/10.1145/93542.93574
https://doi.org/10.1109/TSE.2022.3140868
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://gradle.org
https://asm.ow2.io
https://doi.org/10.1145/3372297.3417240
https://nvd.nist.gov
https://nvd.nist.gov/vuln/detail/CVE-2016-8739
https://nvd.nist.gov/vuln/detail/CVE-2016-8739
https://nvd.nist.gov/vuln/detail/CVE-2017-1000498
https://nvd.nist.gov/vuln/detail/CVE-2017-1000498
https://nvd.nist.gov/vuln/detail/CVE-2017-18349
https://nvd.nist.gov/vuln/detail/CVE-2017-18349
https://nvd.nist.gov/vuln/detail/CVE-2018-11797
https://nvd.nist.gov/vuln/detail/CVE-2018-11797
https://nvd.nist.gov/vuln/detail/CVE-2018-1272
https://nvd.nist.gov/vuln/detail/CVE-2018-1272
https://nvd.nist.gov/vuln/detail/CVE-2018-17202
https://nvd.nist.gov/vuln/detail/CVE-2018-17202
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://spring.io/projects/spring-framework
https://doi.org/10.1002/spe.2346
https://www.cvedetails.com/browse-by-date.php
https://www.jetbrains.com/idea
https://doi.org/10.1016/j.comcom.2021.03.011
https://en.wikipedia.org/wiki/Diff
https://en.wikipedia.org/wiki/Diff
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Syntactic_sugar

	Abstract
	1 Introduction
	2 Background
	2.1 Patch Presence Test
	2.2 Motivating Example

	3 Approach
	3.1 Overview of Ppt4J
	3.2 Feature Extraction
	3.3 Semantic Change Generation
	3.4 Feature Matching
	3.5 Patch Presence Evaluation

	4 Experimental Settings
	4.1 Baseline
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Implementation of Our Approach

	5 Results
	5.1 RQ1: Effectiveness
	5.2 RQ2: Efficiency
	5.3 RQ3: Ablation Study
	5.4 RQ4: In-the-wild Evaluation

	6 Discussion
	6.1 Line number information
	6.2 Ppt4J vs. Baseline

	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

