Zhiyuan Pan
Articles8
Tags6
Categories3

组合数学(离散数学及其应用)

基本计数原理

  • 加法原理
  • 乘法原理
  • 减法原理(容斥原理)

  • 除法原理

  • 树图

鸽巢原理(抽屉原理)

Theorem 1. Pigeon Hole Principle(a.k.a. Dirichlet Drawer Principle)

$k>0,k\in \mathbb{N}$. $k+1$ or more objects are placed into $k$ boxes, then there is at least one box containing two or more of the objects.

  • Key point: figure out the pigeons and the pigeonholes in a particular problem.

Theorem 2. Generalized Pigeon Hole Principle

If $N$ objects are placed into $k$ boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Corollary.

The minimum number of objects such that at least $r$ of these objects must be in one of $k$ boxes when these objects are distributed among the boxes:

排列

$r-$permutation: $P(n,r)=\dfrac{n!}{(n-r)!}$, a.k.a. $A^r_n$

  • $P(n,0)=1$
  • $P(n,n)=n!$

组合

$r-$combination: $C(n,r)=\displaystyle\binom{n}{r}=\dfrac{n!}{r!(n-r)!}$, a.k.a. $C^r_n$

Corollary.

$n,r>0. n,r\in \mathbb{N}, r\le n.$ Then $C(n,r)=C(n,n-r)$

组合证明

  • Bijective Proof
  • Double Counting Proof

二项式定理

Theorem 1. The Binomial Theorem

$n>0, n\in \mathbb{N}. $ Then $(x+y)^n=\displaystyle\sum^n_{j=0}\binom{n}{j}x^{n-j}y^j.$

Corollaries.
In $(x+y)^n$ , assign different values to $x$ and $y$,

Theorem 2. Pascal’s Identity

$n,k>0. n,k\in \mathbb{N}, k\le n.$ Then, $\displaystyle\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}.$

Theorem 3. Vandermonde’s Identity

$m,n,r>0,m,n,r\in \mathbb{N}. r\le m,r\le n.$ Then

Corollary.

$n>0,n\in \mathbb{N}.$ Then $\displaystyle\binom{2n}{n}=\sum^n_{k=0}\binom{n}{k}^2.$

Theorem 4.

$n,r>0,n,r\in \mathbb{N}.r\le n.$ Then $\displaystyle\binom{n+1}{r+1}=\sum^n_{j=r}\binom{j}{r}.$

广义排列组合